Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Taiwan Inst Chem Eng ; 145: 104838, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2298875

ABSTRACT

Background: Traditional herbal medicines usually contain electron shuttle (ES)-like structures compounds which are potential candidates for antiviral compounds selection. Houttuynia cordata is applied as a biomaterial to decipher its potential applications in bioenergy extraction in microbial fuel cells (MFCs) and anti-COVID-19 via molecular docking evaluation. Methods: H. cordata leaves extracts by water and 60% ethanol solvent were analyzed for total polyphenols, antioxidant activity, cyclic voltammetry (CV), and MFCs. The bioactive compounds of H. cordata leaves extracts were assayed via LC/MS analysis. Identification of the marker substances for potential antiviral activity using a molecular docking model was provided. Significant findings: 60% ethanol extract exhibits the highest total polyphenols and antioxidant activity compared with water extracts. Bioenergy extraction in MFCs showed that 60% ethanol extracts could give 1.76-fold more power generation compared to the blank. Flavonoids and their sugar-to-glycan ratios increased after CV scanning and they are expected to be effective ES substances. Quercitrin, from the H. cordata extract that shares an ES-like structure, was found to exhibit strong binding affinities towards ACE2 and RdRp. This indicated the potential of H. cordata leaves as a promising antiviral herb.

2.
Coronaviruses ; 2(8) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2275840

ABSTRACT

Background: Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, which has become a wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 in-fection. In this backdrop, the present study aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (Mpro) using an in-silico analysis. Method(s): High-Resolution Liquid Chromatography Mass Spectrometry analysis (HR-LCMS) was used for the bioactive profiling of ethanolic crude extract of Dictyophora indusiata, Geastrum tri-plex and Cyathus stercoreus. Of which, only bergenin (D. indusiata), quercitrin (G. triplex) and di-hydroartemisinin (C. stercoreus) were selected based on their medicinal uses, binding score and the active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 Mpro, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2. Result(s): A total of 118 bioactive compounds were analyzed from the crude extract of used fungi and identified using HR LC/MS analysis. The binding energies obtained were-7.86,-10.29 and-7.20 kcal/mol, respectively, after docking analysis. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Conclusion(s): Present investigation suggests that these three compounds may be used as alternative inhibitors against SARS-CoV-2 Mpro. However, further research is necessary to assess in vitro potential of these compounds. To the best of our knowledge, the present investigation reported these three bioactive compounds of fungal origin for the first time.Copyright © 2021 Bentham Science Publishers.

3.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

4.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2280701

ABSTRACT

Fruit, vegetables, and green tea contain quercetin (a flavonoid). Some of the diet's most signifi-cant sources of quercetin are apples, onions, tomatoes, broccoli, and green tea. Antioxidant, anticancer, anti-inflammatory, antimicrobial, antibacterial, and anti-viral effects have been studied of quercetin. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, ribonucleic acid (RNA) polymer-ase, and other essential viral life-cycle enzymes are all prevented from entering the body by quercetin. Despite extensive in vitro and in vivo investigations on the immune-modulating effects of quercetin and vitamin C treatment. 3-methyl-quercetin has been shown to bind to essential proteins necessary to convert minus-strand RNA into positive-strand RNAs, preventing the replication of viral RNA in the cytoplasm. Quercetin has been identified as a potential SARS-CoV-2 3C-like protease (3CLpro) suppressor in recent molecular docking studies and in silico assessment of herbal medicines. It has been demonstrated that quercetin increases the expression of heme oxygenase-1 through the nuclear factor erythroid-related factor 2 (Nrf2) signal network. Inhibition of heme oxygenase-1 may increase bilirubin synthesis, an endoge-nous antioxidant that defends cells. When human gingival fibroblast (HGF) cells were exposed to lipo-polysaccharide (LPS), inflammatory cytokine production was inhibited. The magnesium (Mg+2) cation complexation improves quercetin free radical scavenging capacity, preventing oxidant loss and cell death. The main objective of this paper is to provide an overview of the pharmacological effects of quercetin, its protective role against SARS-CoV-2 infection, and any potential molecular processes.Copyright © 2022 Bentham Science Publishers.

5.
J Drug Deliv Sci Technol ; 77: 103921, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2086403

ABSTRACT

Lung cancer and pandemic acute respiratory disease, COVID-19, are examples of the most worldwide widespread diseases. The aim of the current study is to develop cyclodextrin based nanosponge (CD-NS) for loading the flavonoid drug, quercitrin (QCT). This is to improve its solubility in an attempt to enhance its activity against lung cancer as well as SARS-CoV-2 virus responsible for COVID-19. Preparation of CD-NS was performed by ultrasound-assisted synthesis method. Two CDs were employed, namely, ß cyclodextrin (ßCD) and 2-hydroxy propyl-ß-cyclodextrin (2-HPßCD) that were crosslinked with diphenyl carbonate, one at a time. QCT loaded CD-NS revealed entrapment efficiency and particle size ranged between 94.17 and 99.03% and 97.10-325.90 nm, respectively. QCT loaded 2-HPßCD-NS revealed smaller particle size compared with that of QCT loaded ßCD-NS. Zeta potential absolute values of the prepared formulations were >20 mV, indicating physically stable nanosystems. The selected formulations were investigated by Fourier transform infrared spectroscopy, X-ray powder diffraction and scanning electron microscopy which proved the formation of QCT loaded CD-NS exhibiting porous structure. QCT exhibited partial and complete amorphization in ßCD-NS and 2-HPßCD-NS, respectively. In vitro release revealed an improved release of QCT from CD-NS formulations. The biological activity of free QCT and QCT loaded CD-NS was investigated against lung cancer cell line A549 as well as SARS-CoV-2 virus. The results revealed that IC50 values of free QCT against lung cancer cell line A549 and SARS-CoV-2 were higher than those exhibited by QCT loaded CD-NS by 1.57-5.35 and 5.95-26.95 folds, respectively. QCT loaded 2-HPßCD-NS revealed enhanced in vitro release and superior biological activity compared with QCT loaded ßCD-NS.

6.
International Journal of Pharmaceutical Sciences and Research ; 12(12):6214-6220, 2021.
Article in English | EMBASE | ID: covidwho-1884765

ABSTRACT

In recent years, it has been reported that many herbal plants contain antiviral agents which combat a human disease that is caused by pathogenic viruses. The natural products which are obtained from plants as antiviral agents against viruses have gone through researches to check the efficacy and potentials of the herbal products in the prevention of viral disorders. On the basis of randomized controlled studies and in-vivo studies, and in-vitro studies, some agents are utilized all across the globe. Progressively numerous studies on therapy of antivirals have been increased. Though, efficacy remains disputable for antiviral drugs that are employed for viral disorders. The viral diseases are challenging for the health of people around the world cause significant increase in mortality and enhance crises. There are many synthetic antiviral drugs that have a large number of side effects and have narrow therapeutic window range, while in the other hand herbal formulations have minimized side effects. The advantages of herbal formulation over synthetic drugs encourage us to devise and expand new herbal moieties against the emerging viral infections. The medicinal plants contain phytochemicals that have antiviral properties. In this paper, the activity of antiviral agents from medicinal plants which have importance in Ayurveda, are discussed along with their source.

SELECTION OF CITATIONS
SEARCH DETAIL